Developmental Systems Science: Extending Developmental Science with Systems Science Applications

Jennifer Brown Urban, Montclair State University
Patricia L. Mabry, NIH, Office of Behavioral and Social Sciences Research
Nathaniel Osgood, University of Saskatchewan
Janet Okamoto, NIH, National Cancer Institute
Kristen Lich, University of North Carolina – Chapel Hill
State of Developmental Science

- Cutting edge of thinking and research in the study of human development
- Developmental Systems Theories (DST)
 - Bioecological Systems Theory (Bronfenbrenner & Morris, 2006)
 - Developmental Systems Theory (Ford & Lerner, 1992)
 - Developmental Contextualism (Lerner & Kauffman, 1985)
 - Probabilistic Epigenesis (Gottlieb, 1992; 1998; Gottlieb, Wahlsten, & Lickliter, 2006)
 - Dynamic Systems Theory (Thelen & Smith, 2006)
 - Holisitic Person-Context Interaction Theory (Magnusson & Stattin, 2006)
Defining Features of Developmental Systems Theories

- Relational metatheory
- Integration of multiple levels of organization
- Bidirectional individual ↔ context interactions
- Temporality and plasticity
 - Relative plasticity
- Promotion of positive development
- Multidisciplinarity

Methodological Challenges for DST

- DST not new but gaining prominence
- Variable-oriented approaches
 - Person-oriented approaches
- Fundamental challenge = Understanding and measuring complexity
- Minimal investment in methodologies that address complex systems (with some notable exceptions)
 - Nonstationary time series modeling (e.g., Molenaar, Sinclair, Rovine, Ram, & Corneal, 2009)
 - Cognitive development & dynamic systems approaches (e.g., Fogel, 2011; Hollenstein, 2007; Lewis, 2005; Spencer & Perone, 2008; van der Maas et al., 2006; van Geert, 2011)
Developmental Science Meets Systems Science

• Shared history
 ▫ Common theoretical base but divergent methodologies (e.g., Bertalanffy, Capra)

• Systems science refers to a family of methodologies
 ▫ *Modeling and simulation* characterize much if not most of the systems science methodologies

• Systems science methods do not replace, but complement traditional linear, reductionist methods
 ▫ Hybrids are possible

• Where are systems science methodologies being implemented?
Systems science methods address developmental science challenges

<table>
<thead>
<tr>
<th>Developmental Science</th>
<th>Systems Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational Metatheory</td>
<td>Complement reductionist methods and capture non-linear relationships</td>
</tr>
<tr>
<td>Integration of multiple levels of organization</td>
<td>Enable study of complex problems including “big picture”</td>
</tr>
<tr>
<td>Bidirectional individual ↔ context interactions</td>
<td>Examine dynamic interrelationships at multiple levels simultaneously</td>
</tr>
<tr>
<td></td>
<td>Employ causal feedback processes</td>
</tr>
<tr>
<td></td>
<td>Examine impact of behavior on system over time</td>
</tr>
</tbody>
</table>
Systems science methods address developmental science challenges

<table>
<thead>
<tr>
<th>Developmental Science</th>
<th>Systems Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporality and plasticity</td>
<td>Capture dynamic behavior of system over time</td>
</tr>
<tr>
<td></td>
<td>Illuminate time delayed effects and foresee unintended consequences</td>
</tr>
<tr>
<td></td>
<td>Allow for emergent properties</td>
</tr>
</tbody>
</table>
Systems science methods address developmental science challenges

<table>
<thead>
<tr>
<th>Developmental Science</th>
<th>Systems Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotion of positive development</td>
<td>Simulate impact of various policy decisions</td>
</tr>
<tr>
<td></td>
<td>Foresee unintended consequences</td>
</tr>
<tr>
<td>Multidisciplinarity</td>
<td>Facilitate the integration of data and knowledge from multiple disciplines</td>
</tr>
<tr>
<td></td>
<td>Collaborations between content experts and modelers</td>
</tr>
</tbody>
</table>
Systems science methods are particularly well suited for...

- Theory generation and exploration
 - Evidence synthesis
 - Heuristic tool
 - Hypothesis development

- Policy analysis
 - Evaluating policy and informing decisions
 - Scenarios and forecasting

Also occasionally used for theory testing
Specific Systems Science Methodologies

• Social Network Analysis (SNA)
 ▫ Maps and measures relationships and flows between people, groups, organizations

• Agent-Based Modeling (ABM)
 ▫ Simulates the actions and interactions of autonomous agents (individuals, organizations, or groups) to assess their effect on the system

• System Dynamics (SD)
 ▫ Models a system as a set of interrelated compartments (“stocks”) and rates of transition (“flows”) with an emphasis on feedback loops and time delays that affect the behavior of the entire system
Social Network Analysis

• Analyze *connections* across individuals, groups, or institutions

• Network methods focus on:
 ▫ Individual
 ▫ Dyads (two actors and their ties)/Triads (three actors and their ties)
 ▫ Larger systems (subgroups of individuals, or entire networks)

• Purpose of social network analysis
 ▫ Identify important actors, crucial links, subgroups, roles, network characteristics, etc, to answer substantive questions about a phenomena of interest
Social Network Analysis

• Move beyond discrete dyadic relations
• Focus on the social environment
• Uses for network analysis data
 ▫ As input in more traditional statistical models
 ▫ In combination with other systems science methods
 ▫ Detailed visualizations of data
Social Network Analysis Example

These are the **Marginal** students - totally disconnected or not receiving any friend nominations.

The **Marginal** students are those who are not connected to the network, receiving no friend nominations.

The **Accepted** group is the reference group and make up the majority of students. They are those who received 3-5 friend nominations.

The **Accepted** group is the reference group, making up the majority of students who received 3-5 friend nominations.

The **Peripheral** students are weakly connected to the network, with only 1 or 2 nominations.

The **Peripheral** students are weakly connected to the network, with only 1 or 2 nominations.

The **Popular** group are those with 6-7 friend nominations.

The **Popular** group are those with 6-7 friend nominations.

The **Favorites** are those with the highest number of friend nominations (8+) - they are the most popular students.

The **Favorites** are those with the highest number of friend nominations (8+) - they are the most popular students.

* Node size corresponds to # of friend nominations received.
Agent-Based Modeling

- One or more populations composed of individual agents
 - Agents are autonomous, interdependent, follow simple rules, and can adapt over time
- Capture interactions between individuals within populations
- Emphasizes multi-level emergence
 - How distinctive patterns can emerge at different levels of the system
Agent-Based Modeling

• When is it appropriate to use ABM?
 ▫ Dynamic problem
 ▫ Heterogeneity
 ▫ Individual-based model more appropriate
 ▫ Multiple time scales

• When is it not appropriate to use ABM?
 ▫ Lack appropriate data and expertise
 ▫ Only interested in high level understanding (SD may be more appropriate)
Agent-Based Modeling Examples

- Individual residential preferences and segregated neighborhoods (Bruch & Mare, 2006)
- Individual choice and marriage markets (Todd, Billaris, & Simao, 2005)
- Impact of child maltreatment prevention interventions (Hu & Puddy, 2010)
- Diffusion of adolescent sexual initiation (Orr & Evans, 2011)
System Dynamics

• A broad, evolving methodology to help understand & manage feedback systems
• Modeling a system as a set of interrelated compartments ("stocks") and by rates of transition between stocks ("flows")
• Considered an aggregate or compartmental technique
• Frequently used for evaluating the trade-offs and consequences of various policy interventions
System Dynamics

• When is it appropriate to use system dynamics?
 ▫ Need to achieve value early in the modeling process
 ▫ Limited to aggregate data
 ▫ Understand/describe system behavior across all possible parameter values
 ▫ Desire understanding of aggregate behavior

• When is it not appropriate to use system dynamics?
 ▫ Need to represent heterogeneity
System Dynamics Example
Future Applications of Systems Science

- Using system dynamics modeling for thinking about systems of care for adolescents with mental health problems (Lich & Urban)
- Obesity – when to intervene and who to target (ages, race/ethnicity, schools, etc.) (Rahmandad & Ammerman; Hovmand & Brennan, CompMod network)
- Understanding coordinated care for children with complex chronic conditions (Nageswaran)
- Using agent-based modeling to examine school mandates for Human Papillomavirus vaccination (Dempsey)
Toward the Union of Developmental Science and Systems Science

• Developmental Systems Science is:
 ▫ The application of systems science methodologies (such as network analysis, agent-based models, and system dynamics) to developmental science questions, particularly those derived from a developmental systems theoretical perspective
To learn more about systems science...

Research in Human Development

- Developmental systems science: Exploring the application of systems science methods to developmental science questions (Urban, Mabry, & Osgood)
- Estimating the relative impact of early-life infection exposure on later-life Tuberculosis outcomes in a Canadian sample (Osgood, et al.)
- Understanding long-term diffusion dynamics in the prevalence of adolescent sexual initiation: A first investigation using agent-based modeling (Orr & Evans)
- Social network status and depression among adolescents: An examination of social network influences and depressive symptoms in a Chinese sample (Okamoto, et al.)
Week-long intensive training for BSSR investigators

- Purpose: to prepare investigators to feature systems science methodologies in their NIH grant applications
- Annual course with rotating host site and faculty
- Competitive application process – all levels eligible from Ph.D. candidate through full professor
- Features three methodological tracks: system dynamics modeling, agent based modeling, and network analysis
- Call for applications is posted to the NIH BSSR-Systems Science Listserv - contact mabryp@od.nih.gov to join
Thank you!

Jennifer Brown Urban

urbanj@mail.montclair.edu